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ABSTRACT 

An experimental investigation was conducted to determine liquid sloshing character- 
ist ics in cylinders with hemispherical bottoms under low Bond number conditions. 
Static contact angles were restricted to  near 0' s o  that the equilibrium liquid surface 
was nearly hemispherical at very low Bond numbers. 
in both normal- and low-gravity environments. Data were obtained at Bond numbers 
ranging from 0 to  greater  than 800. 
fundamental asymmetric sloshing mode at deep liquid depths were correlated in te rms  
of known system parameters .  
compared with existing theoretical studies. 
normal-gravity experimental sloshing studies. 

The experiments were conducted 

The natural frequency and damping of the 

The natural frequency data at  shallow liquid depths were 
All resul ts  were compared with previous 
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by Jack A. Sa lzman a n d  Wi l l iam J. Mas ica  
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SUMMARY 

As a part of the general study of liquid behavior in low-gravity environments, an 
experimental investigation was conducted to determine liquid sloshing characteristics 
under low Bond number conditions. 
with a hemispherical bottom. Static contact angles were restricted to  near 0' s o  that 
the equilibrium liquid surface was nearly hemispherical at very low Bond numbers. 
experiments were conducted in both normal- and low-gravity environments. The low- 
gravity experiments were conducted in a 5-second free-fall facility. Data were obtained 
at Bond numbers ranging from 0 (~0.001) to  greater than 800. The natural frequency 
and damping of the fundamental asymmetric sloshing mode at deep liquid depths were 
correlated in terms of known system parameters. 
liquid depths were  compared with existing theoretical studies. All results were  com- 
pared with previous normal-gravity experimental sloshing studies. 

The test tank geometry was a right-circular cylinder 

The 

The natural frequency data at shallow 

INTRODUCTION 

An understanding of liquid-propellant sloshing is necessary to analyze rocket ve- 
hicle control and stability with possible coupled fluid oscillations. Therefore, liquid 
sloshing has attracted the interest of many investigators. A comprehensive summary of 
high Bond number sloshing investigations and some of the original work in low Bond 
number asymmetric or lateral sloshing is contained in reference 1. (Bond number is a 
dimensionless parameter essentially indicating the ratio of acceleration to capillary 
forces. ) For high Bond numbers (e. g., greater than loo), where the equilibrium liquid 
surface is reasonably flat, analytical and experimental correlations exist for a wide 
range of symmetric and asymmetric sloshing phenomena pertinent to space vehicle ap- 
plication. For low Bond numbers, and especially with small contact angles, where the 



equilibrium interface is highly curved, only limited information relating to lateral slosh- 
ing is available. 

One experimental study of lateral sloshing was performed by Clark and Stephens 
(ref. 2). Their experiments were conducted under normal-gravity (or  1-g) conditions 
using small-diameter cylinders. Only deep liquid depths (h/R > 2) were considered. 
Empirical relations were  obtained that describe the natural frequency and damping at 
Bond numbers ranging from 8 to about 1000. Another experimental study of low-Bond- 
number lateral slosh was performed by Dodge and Garza (ref. 3). Their experiments 
were  also conducted at normal gravity. The effects of liquid depth were emphasized. In 
general, the results of these two studies agree, although the empirical relations for 
damping differ in form. An experimental study of the sloshing natural frequency and 
damping in cylinders at zero Bond numbers (~0.001) was performed by the authors 
(ref. 4). This study was extended (ref. 5) to include the effects of liquid depth for flat- 
bottom and hemispherical-bottom cylinders. The results of these studies at zero Bond 
numbers cannot be obtained by extrapolating the relations presented in references 2 and 3. 

An analytical study of low Bond number lateral slosh was performed by Concus, 

Their linearized inviscid analysis included the effects of contact angle and 
Crane, and Satterlee (ref. 6). The tank geometry was a cylinder with a hemispherical 
bottom. 
interface curvature. A finite difference technique was used to compute normal-mode 
slosh frequency parameters at discrete Bond numbers and liquid depths. 
ranged from 0 to 50. The results agree with the zero Bond number experimental results 
presented in references 4 and 5. No comparisons have been made at Bond numbers 
other than 0. 

This report presents the results of an experimental investigation on small-amplitude, 
lateral (asymmetric) sloshing in cylinders with hemispherical bottoms. The liquids used 
in the study had static contact angles very near 0' on the cylinders' surfaces. The ex- 
periments were conducted in both normal- and low-gravity environments. The low- 
gravity experiments were conducted in a 5-second free-fall facility. Data were obtained 
on the natural slosh frequency and damping at Bond numbers ranging from 0 to greater 
than 800. The sloshing equilibrium liquid surface at these Bond numbers correspand- 
ingly ranged from a hemispherical to an essentially flat shape. The effect of liquid 
depth was  included. The natural frequency and damping data for deep liquid depths are 
presented and correlated in terms of known system parameters. Shallow liquid depth 
data are presented and compared with existing theoretical studies. The results a r e  
also compared with previous normal-gravity experimental sloshing studies (refs. 2 

and 3). 

Bond numbers 
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APPARATUS AND PROCEDURE 

Lewis Zero-Gravity Facility 

The low-gravity data for this study were obtained in the Lewis Zero-Gravity Facility. 
A schematic of this facility is shown in figure 1. The facility is basically a shaft that ex- 
tends 155 meters  below ground level. The shaft has a concrete liner that is 8.5 meters  
in diameter. A welded steel vacuum chamber, 6. 1 meters  in diameter and 142 meters  
high, is contained inside the concrete liner. A nominal chamber pressure of 13.3 new- 
tons per square meter (1. 
system in series with vacuum pumps located in the facility. Normal pumpdown time is 
about 1 hour. 

The facility has a service building at ground level that contains a shop area, a con- 
t rol  room, and a clean room. The control room (fig. 2) contains the controls for estab- 
lishing the chamber vacuum level, for test operations, and for data retrieval. The clean 
room, which is used for experiment preparation, is maintained at a Class 10 000 rating. 
The room contains an ultrasonic cleaner and a Class 100 laminar flow work station for  
preparing experiments requiring more than normal cleanliness. Instruments to  measure 
fluid properties (such as surface tension, contact angle, etc. ) pertinent to low-gravity 
fluid studies are also included. 

vehicle to free-fall from the top of the vacuum chamber. This results in about 5 seconds 
of free-fall time. The second method is to project the vehicle upwards from the bottom 
of the chamber by a gas-pressure-operated accelerator. The total up-and-down flight of 
the experiment vehicle results in about 10 seconds of free-fall time. Both operations use 
the same recovery system. The experiment vehicle is recovered in a 3.6-meter- 
diameter, 6. 1-meter-deep car t  filled with small pellets of expanded polystyrene. The 
deceleration rate  is controlled by the flow of pellets through the annular area between the 
experiment vehicle and the wall of the deceleration cart. The average deceleration of the 
vehicle is 32 g. For the 10-second tests using the accelerator, the cart  is deployed after 
the experiment vehicle c lears  the top of the car t  (see fig. 1). For the 5-second drop 
tests, the decelerator car t  is positioned in the main section of the chamber prior to  the 
test  drop. In this study, only the 5-second capability was used. 

During the test  drop, the experiment falls freely. No guides o r  lines are connected 
to the experiment vehicle. The only effective force acting on the freely falling vehicle 
(viewed from a coordinate system located on the vehicle) is due to residual-air drag. 
The equivalent gravitational acceleration acting on the experiments during a free-fall test 
is conservatively estimated to be of the order of magnitude of g. Data a r e  collected 
from the experiments by high- speed photography and telemetry. The photographic system 

atm) is obtained by using the Lewis wind tunnel exhaust 

The facility has two methods of operation. One method is to  allow an experiment 
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Figure 1. - Schematic view of Zero-Gravity Facility. 
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Figure 2. - Zero-Gravity-Facility cont ro l  room. 

provides as many as 4000 frames per second of high-resolution film data. Telemetry is 
an Inter-Range Instrumentation Group (IRIG) FM/FM system with 18 continuous channels. 

Experiment Vehicle 

The experiment vehicle used to obtain the low-gravity data in the Lewis Zero-Gravity 
Facility is shown in figure 3(a). The height of the vehicle, exclusive of the support shaft, 
was 2.7 meters, and the largest diameter was approximately 1.06 meters. During this 
program, the total vehicle mass varied from 750 to 1100 kilograms. The vehicle con- 
sisted of three basic sections: a cylindrical body, a conical base containing a thrust sys- 
tem, and a telemetry section. 

The vehicle's cylindrical body contained the experiment t ray and the electrical power 
and control system tray. This section was 1.7  meters  high, with about 1 . 1  meters  avail- 
able for  the experimental apparatus. The experiment t ray is shown in figure 3(b). A 
direct-current motor supplied a single lateral pulse to  a slide carriage which held the 
test container. A photoelectric displacement transducer supplied measurements of the 
lateral impulse. 
400 frames per second. Illumination was by diffuse backlighting. A translucent, gradu- 
ated scale alongside the test  container provided a base for  height measurements. Time 
measurements were obtained by photographing a digital clock and from timing marks 

Liquid surface motion was recorded photographically at about 
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(b )  Experiment assembly tray. 

(a) Test vehicle. 
Figure 3. - Experiment vehicle used for  low-gravity tests. 

placed on the edge of the data film by a pulse generator. Both time bases were accurate 
to 0 . 0 1  second. During the test drop, the cylindrical section was covered with aluminum 
side panels to protect the experiment assembly and to aid the vehicle's decelerating char- 
act e r  istics. 

The conical base of the experiment vehicle housed a self-contained, cold-gas thrust 
system. This system produced thrust values ranging from 13 to 130 newtons (3 to  30 lb) 
for time durations longer than 5 seconds. Steady-state response time was  better than 
50 milliseconds. The thrust system was  calibrated in the facility's main chamber at 
vacuum levels corresponding to test-drop conditions. The cone was  removed from the 
vehicle and placed on a static thrust calibration stand located in the chamber. A null- 
balance, load-cell system recorded the thrust-time history. The thrust curves were re- 
lated to the pressures recorded at the inlet of the thrust nozzle. The magnitude of the 
thrust was set by changing the nozzle configuration and regulator pressure. The low- 
gravity acceleration value was also set by adjusting the weight of the vehicle. In this 
study, low-gravity accelerations produced by the thrust system ranged from about 1 to 
18 centimeters per second squared. 

The top section of the experiment vehicle contained telemetry. During the test drop, 
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telemetry was used to  continuously record thrust nozzle inlet pressure, two low-gravity 
accelerometer outputs, and the output of the transducer recording the lateral displacement 
of the test cylinder. Other telemetric channels were used to  monitor general vehicle per- 
formance, such as decelerating characteristics. 

Density, 

g/cm3 
P, 

0.79 

.81 

1.59 

. 7 9  

1.72 

.79  

_ ~ ~ _ _  1. 58 

Test Containers and Liquids 

The containers were fabricated from acrylic plastic and precision-diameter, boro- 
silicate glass. The plastic tanks were machined and polished cylinders with hemispher- 
ical bottoms. Periodic heat treatment prevented crazing. The glass tanks were cylinders 
with flat bottoms. They were used only in acquiring deep liquid depth data. 

table I. With the exception of the fluorocarbon solvents, these properties were obtained 
from standard references. The fluorocarbon liquid properties were obtained from un- 
published NASA data. The liquids were either analytic reagent grade or, in the case of 
the fluorocarbon solvents, precision cleaning grade. The liquid temperature was meas- 

The test liquids and their physical properties pertinent to this study are given in 

TABLE I. - SUMMARY OF LIQUID PROPERTIES 

Liquid 

-~ 

Acetone 

1 -Butanol 

Carbon 
tetrachlorid 

Ethanol 

bFC-78 

Methanol 

'Freon -TF 

. _ _  

Jiscosit 
rl> 
CP 

- - 

0.32 

2.90 

.97 

1.20 

.82 

. 6 0  

.70 

aWhere 1 dyne/cm = M O - ~  N/cm. 
bFC-78 is Minnesota Mining and Manufacturing 

Co. 's  registered trademark for a fluorocarbon 
solvent. 

CO. ' S  registered trademark fo r  a fluorocarbon 
solvent (trichlorotrifluoroethane). 

'Freon-TF is E. I. Dupont de Nemours and 
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ured before each lateral slosh test. Temperature changes were generally small, pro- 
ducing a negligible effect on liquid properties. All liquids had static contact angles of 
very near 0' on the test cylinder surfaces. A small quantity of dye was added to each 
liquid to improve pkiotographic quality. The dye had no measurable effect on the pertinent 
properties of the liquids. 

Low-G ravity Test Procedure 

The experiment cylinders were prepared in the facility's clean room (fig. 4). Con- 
tamination of the liquid and the cylinder surfaces, which could alter the surface tension 
and contact angle, was carefully avoided. The test cylinders were cleaned ultrasonically 
in a detergent-water solution, rinsed with a distilled water - methanol solution, and dried 
in a warm-air dryer. Glassware was precleaned with chromic acid. The cylinders were 
rinsed with the test liquid, filled to the desired liquid depth, and hermetically sealed in 
the clean room. Sealing of the test containers not only prevented contamination but was 
necessary because of the vacuum in the test chamber. The test cylinders were then 
mounted on the slide carriage in the experiment vehicle. 

Electrical t imers  on the experiment vehicle were set to control the initiation and 
duration of the lateral impulse. After the remaining vehicle instrumentation (such as the 
camera, telemetry, etc.) was set, the experiment vehicle was balanced about its vertical 

- 
C-67-2576 

Figure 4. - Zero-GravRy-FaciliQ clean room. 
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axis. This ensured both an accurate drop trajectory and accurate thrust alinement with 
respect to the test cylinder. Accurate thrust alinement was necessary to provide an 
axisymmetric, equilibrium interface shape. 

was suspended by the support shaft on a hinged-plate assembly. An umbilical cable con- 
nected to the top of the support shaft allowed internal measurements, such as liquid tem- 
perature and thrust accumulator pressure, to be made during chamber pumpdown. Elec- 
trical power was switched to  internal a few minutes before vehicle release. The umbilical 
cable was pneumatically pulled from the support shaft 0. 5 second prior to release. The 
thruster (if used) was activated 0.2 second before release to allow the thrust to reach 
steady-state conditions. The vehicle was then released by pneumatically shearing a bolt 
that was holding the hinged plate closed. No measurable disturbances were imparted to 
the vehicle by this release procedure. 

delay to allow the liquid-vapor interface to approach its equilibrium shape. This time 
delay, or formation time tF, is given in table 11 for each low-gravity test. The allowed 
formation time was generally not sufficient to ensure a completely quiescent interface. 
However, the motion was sufficiently damped that it had no effect on the slosh dynamics. 
The defined formation time is the total time required to damp out large-amplitude, sym- 
metric slosh oscillations under law-gravity conditions. The initial amplitude of the slosh 
is the displacement between the normal-gravity liquid surface shape and the low-gravity 
surface shape. Higher modes are generally excited during the formation. 

In this program, total free-fall test time was 5.16 seconds. About 0.13 second be- 
fore vehicle impact, the thruster was shut down to avoid dispersing the deceleration mate- 
rial. This resulted in about 5 seconds of usable low-gravity test time with thrust. The 
vehicle's trajectory and deceleration were monitored by closed-circuit television. Fol- 
lowing the test drop, the chamber was opened to atmospheric pressure and the vehicle 
was returned to ground level (fig. 5). 

The low-gravity acceleration values were obtained from the ground calibration 
curves of the experiment vehicle's thrust system to within *6 percent. Telemetry data 
during the test drop were used to corroborate the calibrated thrust values. Both the noz- 
zle pressure and the low-gravity accelerometer output were telemetered and recorded 
during the test drop. These data were then compared with the preset ground calibration 
data. Ground calibration was used for the low-gravity acceleration values because it was 
more accurate than the accelerometer telemetry data. 

For the drop test, the vehicle was positioned at the top of the vacuum chamber. It 

During the test drop, the application of the lateral impulse was preceded by a time 
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Liquid 

Acetone 

11 

Cylinder System Bond Normalized 

R ,  a, Bo depth, 
cm cm/sec h/R sec  

frequency, 

rad/sec 

radius, acceleration, number, liquid 

2 

1.59 0.0098 
1.59 1.08 .09 4.32 
1.90 .0098 .0012 
2.22 .0098 .0016 1.10 2.66 
2.54 .0098 . 0021 1.45 1.96 

I 

Carbon 
tetrachloride 

aFC-78 

Methanol 

bFreon-TF 

4.29 
3.74 

1.59 0.0098 0.0015 >2.0 0. 88 
1. 59 5.87 .88 >2.0 1.00 
2.00 9.30 2.21 1.0 1.25 

1.90 17.6 8.4 >2.0 1.42 
2.22 17.6 11.4 >2.0 1.44 
2. 50 17.6 14. 5 .25  1. 50 2.83 
2. 54 17.6 14.9 >2.0 1.32 3.70 

2.00 

2.00 11.8 4.0 0.25 
2.00 11.8 4.0 .75  
2. 50 17.6 9.3 .25 

3.19 ---- 2. 50 17.6 9.3 . 50 
2.00 17.6 6.0 >2.0 4.35 0.46 

---- 



Figure 5. - Vehicle retrieved following test drop. 

Normal-Gravity Lateral Slosh 

The apparatus used to obtain the normal-gravity data for this study is shown in fig- 
ure  6. This slosh apparatus can supply a variety of forcing functions over a range of fre- 
quencies and amplitudes applicable to lateral sloshing. The lateral drive is supplied by a 
high-torque, variable-speed, direct-current motor. The cam shape determines the form 
of the forcing function. In this study, the forcing function was essentially a single pulse. 
The amplitude and duration of the pulse were experimentally set to  produce small- 
amplitude, normal-mode lateral sloshing. The experiment tanks were cleaned and pre- 
pared in the same way as for the low-gravity tests. A high-speed camera recorded the 
fluid behavior. A digital clock with a calibrated accuracy of 0.01 second was placed in 
the field of view of the camera to provide time measurements. 
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C-67-4074 
Figure 6. - Lateral slosh apparatus for normal-gravity tests. 

RESULTS AND DISCUSSION 

The dimensionless parameter that characterizes a low-gravity condition for a fluid 
interface system is the Bond number. The Bond number for a cylindrical tank is 

2 
BO=- aR 

P 

where a is the equivalent gravitational acceleration. When the Bond number is large, 
gravity dominates; when small, capillarity dominates. Thus, the acceleration, system 
size, and fluid properties are all necessary to characterize a low-gravity fluid condition. 

value is based on the estimated acceleration value of 
drops resulted in Bond numbers of approximately 0.001. 
magnitude a r e  referred to as zero. Similarly, the terms "high" Bond number and "lowf1 
Bond number will refer to Bond numbers greater than and less  than 100, respectively. 
These definitions a r e  arbitrary and a r e  not to be regarded as exact quantitative boundar- 
ies, especially at shallow liquid depths. The definitions of high, low, and zero Bond 
numbers a r e  used herein only for convenience in describing general limitations of theo- 
retical analyses and sets of experimental data. 

numbers ranging from 0 to  about 15 with cylinder radii ranging from 1.59 to  2. 54 centi- 
meters. The data obtained at normal gravity using cylinder radii between 0.317 and 
3.17 centimeters resulted in Bond numbers ranging from about 3 to 800. 

In this study, the maximum Bond number during a free-fa11 drop was  0.002. This 
g. The majority of free-fall 
Bond numbers of this order of 

The low-gravity data obtained in the Lewis Zero-Gravity Facility resulted in Bond 
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Data Reduction 

The film slosh data were analyzed on a motion picture film reader. Slosh wave 
heights along the wall of the cylinder were recorded as a function of time. These data 
were plotted by a computer printout, yielding curves similar to  that shown in figure 7. 
All lateral sloshing was small amplitude, that is wave heights were less than 0.25 R. For 
these small amplitudes, wall wave heights were observed to  execute damped harmonic 
motion with no measurable decrease in frequency. By averaging the plotted half-periods 
of oscillation, an overall frequency for each test was obtained. The damping in all cases 
was sufficiently small that this measured frequency was effectively the natural frequency 

wl. 
the logarithmic decrement 6. The logarithmic decrement was obtained by plotting the 
amplitude decay per cycle (ref. 4). 

ber, as well as on the liquid volume. For the zero and high Bond number extremes, the 
centerline liquid depth is related simply to  the volume of the liquid. At other Bond num- 
bers, relations similar to that given on page 96 of reference 6 may be used to relate the 
centerline depth to liquid volume. The latter theoretical curves were used to initially de- 
termine the liquid volume required to yield a desired liquid depth at a given Bond number. 
The liquid depth was also measured directly from the data film. No measurable discre- 
pancies were noted. 

The damping was observed to be exponential and thus can be described in terms of 

The value of the centerline liquid depth h depends on the magnitude of the Bond num- 

0.850 1. ooo 1. 150 1.300 1.450 

Time, sec 

Figure 7. - Sample data plot of lateral slosh. Bond number, 29. 

L 600 
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Fundamental Mode Shape 

Representative photographs of the first or fundamental lateral slosh mode at various 
Bond numbers are shown in figure 8. The normal- and low-gravity data extend over a 
range of Bond numbers from 0 to about 800. The equilibrium liquid surface correspond- 
ingly ranged from a hemispherical to an essentially flat surface shape. A s  might be ex- 
pected, the fundamental slosh-mode shape exhibits a similar dependence on Bond number. 
In the fundamental mode, the vertex of the liquid surface remains at the centerline of the 
cylinder and maximum displacement occurs at the cylinder wall (see fig. 9). Quantitative 
measurements of the mode shape could not be obtained accurately in this study, princi- 
pally because of refraction effects near the wall of the cylinder. However, the mode 
shapes (0' static contact angle) did agree qualitatively with the theoretical eigenmodes 
(5' static contact angle) given in reference 6. Higher modes were generally excited dur- 
ing the application of the lateral impulse. Only rarely was circular motion or swirling 
observed. In all cases these higher and nonlinear modes quickly decayed to the funda- 
mental mode during the free lateral sloshing. 

an unwetted surface. The initial slosh wave deposits a film of liquid on the wall. Subse- 
quent oscillations occur on this liquid film. This observation was previously noted by the 
authors for lateral sloshing at zero Bond numbers (ref. 4). While this residual layer is 
especially noticeable at low Bond numbers (apparently being more pronounced for liquids 
with the lowest surface tensions), the residual liquid layer was  observed over the entire 
Bond number range of this study. 

This fact is important for several reasons. It may explain the agreement between in- 
viscid theory and experimental results obtained in cylinders of relatively small diameter. 
The residual layer may influence the sloshing characteristics, either directly or indi- 
rectly through possible changes in the contact angle. Contact-angle changes, whether 
hysteresis, dynamic, or the reported "stuckTf-edge effect (ref. l), a r e  known to influence 
the natural frequency. Recently, Miles  has proposed that contact-angle effects may 
partly explain the small but measurable differences between theoretical and experimental 
damping at large Bond numbers (ref. 7). It might be expected that these effects would be 
greater in low-Bond-number environments because of the relatively greater role of capil- 
larity. The residual liquid layer is important in determining the magnitude of these ef- 
fects. 

film) is given later (p. 30). It is sufficient to say that fundamental lateral sloshing ob- 
tained in this study was "free, r f  that is, there were no measurable contact-angle varia- 
tions. The apparent curvature of the sloshing-mode shape increased smoothly from the 
vertex to the edge. This was an experimental condition for this program. Experiment 

Free lateral sloshing was observed to occur on a thin layer of liquid rather than on 

A discussion of the possible contact-angle effects (considering the residual liquid 
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(a )  Bond number, <0.001; acceleration, 0.0098 centi- (b )  Bond number, 0.9; acceleration, 1.59 centimeters ( C )  Bond number, 6; acceleration, 17.6 centimeters 
meter per second squared; cylinder radius, l . W  
centimeters. 

per second squared; cylinder radius, 1.59 centimeters. per second squared; cylinder radius, 2.0 centimeters. 

t 

(d)  Bond number, 13; acceleration, 980 centimeters ( e )  Bond number, 3G; acceleration, 980 centimeters ( f )  Bond number, 536; acceleration, 980 centimeters 
per second squared; cylinder radius, 0.635 centimeter. per second squared; cylinder radius, 0.952 centimeter. per second squared; cylinder radius, 2.54 centimeters. 

Figure 8. - Fundamental sloshing mode at various Bond numbers. 



_-- Equil ibr ium interface - Sloshing interface 

Figure 9. -Test geometry. 

parameters were selected deliberately to allow free oscillations and to avoid introducing 
contact-angle changes. 

Natural Frequency 

Deep liquid depth (h/R > 2). - The natural frequency data obtained in this study at 
deep liquid depths are given in tables 11 and III. The natural frequency w1 can be ex- 
pressed in the dimensionless form 

2 3  
a =- 2 wlR 

P 

A plot of the data in the form of equation (2) as a function of Bond number is presented in 
figure 10. Note that the Bond number coordinate is Bo + 1.4. This choice of scale per- 
mits the zero Bond number data to be placed on the log-log graph and also facilitates a 
graphical solution to the data (see p. 20). The low- and normal-gravity data are sepa- 
rately indicated. These show that there are no separate trends and that the scaling pa- 
rameters were correctly chosen. Also, at comparable Bond numbers the low-gravity 
data have generally larger cylinder radii than the normal-gravity data. 

The zero Bond number point in figure 10 is the average of the data obtained in this 
study and the data previously presented in reference 4. The results of this investigation 
using larger radii cylinders and longer environment test times than previously available 

17 



TABLE m. - SUMMARY OF NORMAL-GRAVITY DATA 

Bond Liquid Cylinder Normalized 
lumber, radius,  liquid 

depth, Bo R, 
c m  h/R 

Liquid 

Acetone 

Measured Logarithmic 
natural decrement 

frequency, 6 

1' 
rad/sec 

W 

Cylinder 
radius,  

R, 
cm 

3.4 IMethanol 0.317 
.635 
.952 
1.59 
1.90 

~ 0.317 1 >2.0 1 92.9 I( 0.75 
13 
30 
82 
118 

3.2 

>2.0 92.4 0.66 
~ 55.6 ~ .18 

44.2 .16 
32.7 .06 I 30.5 .05 

.500 .25 39.2 ---- 
. 50 51. 5 ---- 

56.1 ---- 
61.0 
55.6 0.25 

I 1::: 
.635 >2.0 

1 -Butanol 0.317 >2.0 88.4 1.39 
55.8 .64 

.33 
1.27 37.4 .40 

Normalized 
liquid 
depth, 

h/R 

Measured Logarithmic 
natural  decrement,  

frequency, 6 

9' 
rad /sec  

1.00 .25 31.0 ---- 
1.00 .50 34.3 ---- 
1.25 .25 28. 2 ---- 
1.25 . 50 29.8 ---- 

52 

Carbon 0.317 >2.0 84.9 0.64 5.9 
15 tetrachloride .500 .25 43.3 ---- 

. 500 . 50 36.9 ---- 15 ' 

.952 >2.0 44.2 .16 53 
1.00 .25 32.4 ---- 58 

. 50 32.9 ---- 58 
58 35. 5 
58 38.3 ---- 

1.27 >2.0 37.6 .10 94 

8.3 .635 >2.0 54.1 .27 24 aFreon-TF 0.317 >2.0 78.5 ---- 
21 . 500 .50 46.2 ---- 
21 .500 1.00 56.1 ---- 

.635 >2.0 53.7 0.18 33 

.952 >2.0 43.0 .13 75 
130 

---- 
1.25 .25 28.6 ---- 

. 50 29.9 _-__ 

34.5 ---- 
37.4 0.07 134 

86 1. 58 >2.0 33.0 .06 207 
1.90 >2.0 30.8 .06 300 
2.00 .25 22.4 ---- 330 

' 25.4 

1 1::: 

32.0 ---- 1 J 1:;: 

---- 1 J 1::: 

Ethanol 0.317 >2.0 89.7 0.96 3.5 
.635 53.9 .34 14 

31 1.27 >2.0 43.6 .41 
.14 1::; 1 33.0 

2.22 28.3 .ll 171 
3.17 22.4 .07 348 

I I 
I 23.9 ---- 

27.3 ---- 

.50 I I 

I 2.54 >2.0 26.3 0.03 536 
! 3.17 >2.0 . 24.0 .03 835 

Bond 
umber:  
Bo 

3.5 

14 r 
19 
19 
31 
34 
34 
54 
54 

~~ ~~~ ~ 

"Freon-TF is E. I. Dupont de Nemours and Co.'s regis tered t rademark  for a fluorcarbon solvent (trichlorotrifluoroethane), 
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2 confirm that S2 = 2.6 (es = 0') at zero Bond numbers. 
The theoretical points shown in the figure were calculated from the eigenvalues 

( O s  = 5 ) presented in reference 6. While the theoretical points a r e  consistently above 
the experimental data below Bond numbers of 10, the theoretical calculations agree quite 
well with the data. Specifically, the largest difference is at a Bond number of 0 where 
the theoretical a2 is 2.8. This difference is less  than 8 percent. The data adequately 
confirm the theoretical calculations at deep liquid depths, considering experimental er-  
ror and the differences in contact angle. 

When the zero  Bond number result (sl = 2.6) and the known natural frequency rela- 
tion for large Bond numbers at deep liquid depth, namely, 

0 

2 

R 
w,, = 1.84- 2 

or 

a2 = 1.84 Bo i (3) 
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are used, the relation that best describes all the data in figure 10 is 
\ 

or 

G2 = 1.84(1.4 + Bo) 1 
I 2 !2 = 2.6 + 1.84 BO 

(4) 

h 
R 

2 0 w1 = (2.6 + 1.84 BO) - 
PR3 

Equation (4) is represented by the straight line in figure 10. The difference between this 
result and others previously presented is the constant 2.6. Others have used 1.5, the 
number originally estimated by Satterlee and Reynolds (ref. 1, chapter 11). The constant 
2.6 represents the capillary contribution to the lateral natural frequency. Equation (4) 
shows that capillary effects begin to appear for Bond numbers below about 20. Since the 
correlation reduces to the confirmed high Bond number results, equation (4) is valid at all 
Bond numbers. 

Shallow liquid depth (h/R < 2). - At all Bond numbers, the natural frequency de- 
creases as the liquid depth decreases. The shape of the cylinder bottom determines the 
depth dependence of the natural frequency. For flat-bottom cylinders, results given in 
references 1, 3, and 5 cover the entire Bond number range. For hemispherical-bottom 
cylinders, only the Bond number extremes have been studied experimentally. At zero 
Bond numbers, the relation obtained was (ref. 5) 

2 2 6 P  ( ;) 0 w1 = - tanh 2 - 
R3 

At high Bond numbers, spherical-tank eigenvalues at discrete liquid depths were calcu- 
lated by Budiansky (ref. 8) and independently by Riley (ref. 9). Their results with 
h/R 5 1 can be used to calculate frequencies in hemispherical-bottom tanks at high Bond 
numbers. Their results are in agreement with published normal-gravity experimental 
data. 

The shallow liquid depth, natural frequency data in hemispherical-bottom cylinders 
obtained in this study are given in tables 11 and IJI. These data cover the Bond number 
range from 1.6 to 330. Only data above liquid depth ratios of 0.25 were obtained. Ac- 
curate measurements of natural frequency could not be made below this depth ratio. By 
using the natural frequency parameter defined by equation (2), the data were plotted in 
figure ll(a) to (d) at the four liquid-depth ratios studied. The half-power of the frequency 
parameter was used to avoid squaring e r ro r s  in the measured frequency. The zero Bond 

20 



I 

i 
- 0  
- A  

0 

I I l l  
Normal gravity 
Low gravity 
Averaged zero Bond 

number data (ref. 5) 
-D- Theory(ref. 6) 

Theory (eq. (7); data from - --- 
refs. 8 and 9) 

5 . 

101 

(a) Liquid deoth ratio. 1.00. 

/. , 
;2’ 

102 
Bond number + 1.4 

(b) Liquid depth ratio, 0.75. 

Figure 11. -Na tu ra l  frequency parameter as function of Bond number. 
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number points were obtained from reference 5. 

erence 6 are also shown in these plots. Points at the liquid depth ratio of 0.75 were ex- 
trapolated from these. calculations. These points have been connected by a hand-drawn, 
solid curve. The large-dashed curves represent theoretical values interpolated from the 
results of Budiansky and Riley (refs. 8 and 9). The fundamental eigenvalue hl of their 
studies is 

The theoretical low Bond number points calculated from the eigenvalues given in ref- 

U;R 
x1 = - 

a 

This equation can be written in the form 

S2 = (XIBo) 1 /2 (7) 

allowing direct comparison with the experimental data and low Bond number theory. The 
large-dashed curves in figure 11 are plots of equation (7) with the appropriate values for 

hl. The specific values were X1 = 1.56 for h/R = 1.00, 1.35 for h/R = 0.75, 1.19 for 
h/R = 0.5, and 1.075 for h/R = 0.25. These curves are extended down to Bond numbers 
of 4. This extension is not intended to provide low Bond number predictions, as equa- 
tion (7) is rigorously valid only for flat equilibrium liquid surfaces, where capillarity can 
be ignored. However, the experimental data and low Bond number theory should ap- 
proach these curves as the Bond number increases. The high Bond number curves were 
therefore arbitrarily extended to show asymptotic trends. 

The data agree with theory in that the frequency does not decrease significantly until 
the liquid depth ratio is below 1.0. The decrease in frequency caused by reducing the 
liquid depth ratio from 2.0 to 1.0 is less than 10 percent (see small-dashed curve in 
fig. 11). Below a depth ratio of 1.0, the frequency decrease occurs rapidly. 

the analytical results of Concus (ref. 6) at low Bond numbers and Budiansky and Riley 
(refs. 8 and 9) at high Bond numbers. At liquid depth ratios of 1.0 and 0.75, the theoret- 
ical curves become asymptotic at Bond numbers of 40 to  50. There is a trend towards a 
higher asymptotic Bond number value at the lower liquid depth ratios. Near these values 
the experimental data begin to fall towards the low Bond number theoretical curves. 
These asymptotic Bond number values agree qualitatively with the change in the shape of 
the equilibrium liquid surface with Bond number. For deep liquid depths, the liquid sur- 
face is reasonably flat at Bond numbers as low as about 50. For shallow liquid depths, 
where both Bond number and liquid volume are necessary t o  characterize the liquid sur- 

In figure 11, the experimental data at shallow liquid depths a r e  shown to agree with 
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face shape, a larger Bond number is required to  produce a flat liquid surface. 
The low Bond number theoretical curve is not smooth at the liquid depth ratio of 0. 5. 

At the 0.25 depth ratio, inflections in the theoretical curve are even greater. A compari- 
son between the theoretical eigenvalues and the data at this depth ratio (0.25) is made in 
figure 12. The low Bond number eigenvalues w1 /[(l + Bo)P/R ] were obtained directly 
from the results of reference 6. These eigenvalues reduce to  the normal-gravity eigen- 
value form given in equation (6) at large Bond numbers. The square roots of the eigen- 
values are plotted in figure 12, again to  avoid multiplying e r ro r  in the measured fre- 
quency. 

The data and theoretical eigenvalues for the liquid depth ratio of 1. 0 are also pre- 
sented in figure 12 for comparison. At this depth ratio, the low and high Bond number 
eigenvalues and the experimental data are in agreement. The eigenvalues display a 
smooth decrease from the zero Bond number value, asymptotically approaching the high 
Bond number eigenvalue at a Bond number of 50. The 0.75 depth ratio data show a sim- 
ilar trend. The 0. 50 depth ratio data a re  similar to that shown by the presented 0. 25 
depth ratio data. Here, the calculated zero Bond number eigenvalue is also greater than 
the high Bond number eigenvalue. However, as the Bond number increases the eigen- 
values drop below the high Bond number value. 

calculated low Bond number eigenvalues at the liquid depth of 0.25. At a Bond number of 
50, the difference between the data and low Bond number theory is about 20 percent. 
This is the largest difference noted (regardless of liquid depth ratio). The experimental 
data do, however, follow the inflection in the analytical low Bond number curve. It can 
be concluded that the experimental data agree with the low Bond number theory over the 
range of liquid depths studied, considering the measurement error and difference in con- 
tact angle. 

2 3 

The experimental data tend toward the high Bond number eigenvalue faster than the 

0 Normal gravity \ 
A Low clravitv - cu Averaged zero Bond num- 

ber data (ref. 5) 

Theory (refs. 8 and 9) 
+ Theory (ref. 6)  

Bond number + 1.4 

Figure 12. -Comparison of experimental data w i th  theoretical eigenvalues. 
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Deep Liquid Depth Damping 

Logarithmic decrement results. - The decay of the lateral slosh wave at the wall of 
the cylinder was measured in terms of the logarithmic decrement. The logarithmic de- 
crement is defined as 

1 *O 6 = - l n -  
An 

and is related to the exponential damping coefficient a by 

The experimental logarithmic decrement data obtained in this study are given in tables 11 
and III. These data represent the total damping observed for each set of variables. 
Values are given only for the deep liquid depth data. At shallow liquid depths, measure- 
ments of 6 based on equation (8) were found to contain too large an uncertainty to be re- 
liable. 

The logarithmic decrement may be expressed in terms of the system variables by 

The empirical value of Kd is 6. 1 for high Bond numbers (refs. 1 and 10) and 28. 1 for 
zero Bond numbers (ref. 4). A plot of the experimental data, expressed as Kd, is shown 
in figure 13 as a function of Bond number. The Kd values were calculated by using 
equation (10) and the measured frequencies and logarithmic decrements. Note that the 
abscissa is the square root of the Bond number. Representative zero Bond number data 
(i. e., Bo < 0.001) from reference 4 are included in figure 13. The zero Bond number 
data are shown separately to indicate the spread in the measured values. The zero Bond 
number value of Kd = 28.1  obtained in reference 4 is an average result accurate to  
within &lo percent. The data obtained in this study are within this average value. 
Therefore, these results, using larger-radii cylinders and a longer environmental test 
time than previously, confirm that Kd = 28.1  at zero Bond numbers. 

of Bond number, represents a satisfactory correlation of the data. There are no sepa- 
rate trends with either acceleration or fluid property dependence. The data are ap- 

In figure 13, it is shown that equation (lo), with Kd regarded as an explicit function 
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Fiqure 13. - Low-gravity and normal-gravity experimental damping data. 

proaching the required value of Kd = 6.1 at high Bond numbers. By using this value and 
the zero Bond number result, a curve was fitted to the data. This curve is shown in fig- 
ure  13. The curve represents a reasonable approximation to the data and can be used to 
predict the total damping of free, fundamental lateral sloshing at any Bond number. 

The increase in the coefficient of the logarithmic decrement (i. e., Kd) over the high 
Bond number result occurs in the same Bond number region where the interface shape 
changes rapidly. An attempt was made to correlate the logarithmic decrement curve with 
the shape of the interface, but no satisfactory relation was obtained. Nevertheless, we 
believe that the change in shape of the interface has an effect on the observed change in 
damping and that the damping over the entire Bond number spectrum is due principally to 
viscous effects at the wall of the cylinder. 

Besides viscous damping at the container wall, the total damping may also be caused 
by bottom effects, contact-angle variations, and surface damping (ref. 7). Damping due 
to  bottom effects was negligible because of the deep liquid depth ratios. The effect of 
possible contact-angle variations is discussed later (p. 30). Surface damping was ob- 
served to affect the higher modes. (These higher modes were more quickly damped at 
lower Bond numbers. ) However, we believe that surface damping is negligible in the 
fundamental mode. Surface-tension variations and contamination were precluded by the 
choice of liquids and cleaning procedures used in this study. Therefore, the total damp- 
ing in the fundamental mode is principally due to viscous damping at the container wall. 
An increase in viscous damping occurs as the Bond number decreases and the interface 
becomes more curved; a constant limit is reached when the interface shape is nearly 
hemispherical. 

Comparison with published results. - The damping data of this study may be com- 
pared with the normal-gravity results of Clark and Stephens (ref. 2) and Dodge and Garza 
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(ref. 3). The relation obtained by Clark and Stephens may be written as 

The relation proposed by Dodge and Gama is 

I Both equations (11) and (12) were empirically obtained, the former by visual measure- 
ments (i. e., using eq. (8)) and the latter by force response measurements. While each 
reduces to the confirmed value of Kd at high Bond numbers, neither relation correctly 
predicts the logarithmic decrement at very low Bond numbers. 

These results a r e  compared directly with the results of this study in figure 14. The 
solid curve was previously presented in figure 13. The dashed curve represents equa- 
tion (12); the corresponding data a r e  also from the same study. (Neither eq. (11) nor the 
actual data presented by Clark and Stephens can be plotted in the form used in the figure. 
It is noted, however, that eq. (12) was also found to  f i t  their data.) Some high Bond num- 
ber data obtained by Stephens are also shown. Except for very low Bond numbers, fig- 
ure  14 shows that the studies yield similar results. The data spread is about the same as 
that occurring at high Bond numbers. Specifically, the magnitudes of the logarithmic de- 
crement at any given Bond number are comparable. The rates of change in the logarith- 

I 
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Figure 14. -Comparison of publ ished damping data. 

27 

I 



mic decrements are nearly identical and occur in the same Bond number region. 
Damping coefficient. - From equation (9) the damping coefficient is 

The coefficient of the logarithmic decrement increases by a factor of 4 from high to  zero 
Bond numbers. However, the natural frequency decreases. The behavior of the damping 
coefficient as a function of Bond number depends on these two opposing changes. Substi- 
tuting the correlations for 6 and w1 (eqs. (4) and (10)) into equation (13) yields 

U a!=- "( - nZ)1 /2k .6  + 1.84  Bo) 1 
3 

PR PR - 2rr 

L/4 
h 0 

R 
-2  2, e s =  o 

where Kd is an explicit function of Bond number given by the curve in figure 13. This 
equation can be used to predict the total damping coefficient at deep liquid depth ratios. 
Normalizing equation (14) by using a! at zero Bond numbers, that is, 

eliminates the explicit radius and liquid property dependence 

Kd(2. 6 + 1.84  Bo) 1/4 
a -  - 

(@)Bod) 35.7 

In this form, the normalized damping coefficient is an explicit function of Bond number 
only. 

The normalized damping coefficient given by equation (16) and the experimental data 
of this study are plotted in figure 15. The data were plotted by using the actual measured 
frequency and decrement values. The normalized damping coefficient curve has a rela- 
tive maximum at a Bond number of about 9. This is caused by the empirical curve used 
to correlate Kd. The natural frequency increases continuously with Bond number; Kd, 
however, displays a step decrease in the Bond number region of about 1 to 100. For 
Bond numbers from 1 to  9, w1 increases faster than the decrease in Kd. For Bond 
numbers from 9 to  100, Kd dominates and decreases faster than the increase in wl.  
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Figure 15. - Damping coefficient as function of Bond number. 

Above Bond numbers of about 100, where Kd approaches a constant, the normalized 
damping coefficient increases continuously with wl. 

inflection in the normalized damping coefficient is uncertain. 
the data tends to follow the curve. It is also noted that the results of references 2 and 3 
parallel these results down to a Bond number of about 9. 

The immediate significance of the normalized damping coefficient is not in the inflec- 
tions. What is important is the asymptotic behavior as the Bond number is decreased. 
The curve in figure 15 shows that the normalized damping coefficient tends to remain 
constant below Bond numbers of 100. The decrease in natural frequency compensates for 
the increase in the coefficient of the logarithmic decrement. These results imply that for 
identical radii and liquids the damping coefficient a is relatively independent of acceler- 
ation in the Bond number region from about 100 to 0. 

Since the curve for Kd in figure 13 is only an approximation, the exact nature of the 
However, the average of 

The time required to damp a slosh wave to a fraction A of its amplitude is 

(Exponential damping is assumed.) According to  the preceding results for a, T will be 
nearly constant for Bond numbers from 0 to 100 for otherwise equal variables. The time 
required to  reach a given residual free slosh wave amplitude is practically independent of 
acceleration in the Bond number region from about 100 to 0. 
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Dynamic Contact-A ng le Effects 

As was mentioned previously, the static contact angle 8, was near 0' for all sys- 
tems tested. The value of the static contact angle is important because of its dominating 
effect on both the low Bond number interface shape and the low Bond number sloshing fre- 
quency. Of equal importance is the possible dynamic variation of the contact angle during 
the sloshing motion. If the contact angle changes during sloshing, it is known that the 
frequency and damping (refs. 1 and 7) will be affected. 

In this study, parameters were chosen to  presume a near 0' contact angle. No 
measurable change in the contact angle was observed for the data presented. A visual 
check is sufficient to  detect gross contact-angle changes. However, minor variations in 
the contact angle usually cannot be measured because of refraction near the wall of the 
cylinder. An estimate of the possible change in contact angle due to the sloshing motion 
was calculated. Unpublished NASA data confirm that the dynamic contact angle as given 
by Fritz (ref. 11) can be predicted by 

tan 8d = K (31'3 - 

The equation is rigorously applicable only for a steady interface velocity V and when the 
interface moves over a previously wetted liquid layer. The latter condition was observed 
in the fundamental mode. 

Using the maximum instantaneous velocity of the slosh wave Anwl, equation (18) was 
used to calculate dynamic contact angles. While some values were as high as 25", the 
majority were less than 10'. An examination of the data showed no systematic trend with 
these values. For example, the spread in the damping data of figure 13 could not be cor- 
related with the estimated departure from a OO-contact-angle condition. Also, the be- 
havior of the coefficient of the logarithmic decrement cannot be attributed to contact- 
angle variation. Based on these comparisons and the fact that the use of the maximum 
interface velocity greatly overestimates the probable dynamic effects, we concluded that 
variations in the contact angle for the data presented are entirely negligible. 

SUMMARY OF RESULTS 

An experimental investigation was conducted to determine the natural frequency and 
damping characteristics of small-amplitude lateral sloshing in low Bond number environ- 
ments. The study employed right-circular cylinders, 0.317 to  3.17 centimeters in ra- 
dius R, with hemispherical bottoms. Test liquids were restricted to those which pos- 
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sess near 0' static contact angles on the cylinders' surfaces; effects due to dynamic var- 
iations in the contact angle were negligible. These liquids had viscosities q between 
0.32 and 2.9 centipoise, surface tensions u between 13.2 and 26.9 dynes per centime- 
ter,  and densities p between 0.79 and 1.72 grams per cubic centimeter. Experiments 
were conducted in both a normal-gravity environment and low-gravity environments 
ranging as low as l o m 5  g. Data were obtained on the fundamental sloshing frequency and 
damping at Bond numbers Bo ranging from 0 (i. e., EO. 001) to greater than 800. The 
study yielded the following results: 

1. The change in the fundamental slosh-mode shape corresponded to the change in 
the equilibrium liquid surface shape with Bond number. Free lateral sloshing was  ob- 
served to  occur on a residual layer of liquid deposited by the initial slosh wave. 

liquid centerline depth) was empirically determined to  follow the relation 
2. The natural frequency o1 at deep liquid depths (i. e., h/R > 2, where h is the 

2 u w1 = (2.6 + 1.84 BO) - 
P R 3  

The relation confirms the zero Bond number result of reference 4 and reduces to the well 
known high Bond number limit. 

3. The natural frequency data in hemispherical-bottom cylinders at shallow liquid 
depths (i. e., h < 2R) compared favorably with the analytical predictions of Concus, 
Crane, and Satterlee (ref. 6) at low Bond numbers and with the results of Budiansky and 
Riley (refs. 8 and 9) at high Bond numbers. 

4. The damping in terms of the logarithmic decrement was determined to  follow the 
relation 

where the nondimensional damping constant Kd is a function of Bond number. At Bond 
numbers less than approximately 1, Kd had a value of 28.1, which is the zero Bond num- 
ber damping constant. The value of Kd decreased rapidly in the Bond number region 
from approximately 1 to 100. Above Bond numbers of 100, Kd approached the value of 
6.1 which is the established high Bond number damping constant. 

5. The damping coefficient a can be predicted by using the correlations for 6 and 
The damping coefficient does not vary significantly from the zero Bond number *1' 

value in the Bond number region from 0 to 100. In this region, the damping coefficient 
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is practically independent of the magnitude of the system acceleration for otherwise 
equal cylinder radii  and liquid properties. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 12, 1968, 
I 124-09-17-01-22. 
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contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONA L AERON AUT1 C S  AND SPACE ADMI N ISTRATI ON 
Washington, D.C. PO546 


